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Viscous Faraday waves in two-dimensional
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A weakly nonlinear analysis of one-dimensional viscous Faraday waves in two-
dimensional large-aspect-ratio containers is presented. The surface wave is coupled
to a viscous long-wave mean flow that is slaved to the free-surface deformation. The
relevant Ginzburg–Landau-like amplitude equations are derived from first principles,
and can be of three different types, depending on the ratio between wavelength, depth
and the viscous length. These three equations are new in the context of Faraday
waves. The coefficients of these equations are calculated for arbitrary viscosity and
compared with their counterparts in the literature for small viscosity; a discrepancy
in the cubic coefficient is due to a dramatic sensitivity of this coefficient on a
small wavenumber shift due to interplay between viscous effects and parametric
forcing.

1. Introduction
Faraday waves (Faraday 1831; Rayleigh 1883) are parametrically excited on the

fluid surface upon vertical vibration of the container when the forcing amplitude
exceeds a frequency-dependent threshold value (Fauve 1995). Beyond this threshold,
these waves exhibit a fairly interesting spatio-temporal behaviour (Miles & Henderson
1990; Cross & Hohenberg 1993), especially at large aspect ratio (Douady, Fauve &
Thual 1989; Kudrolli & Gollub 1997; Westra, Binks & van de Water 2003).
Unfortunately, several issues remain unsolved, especially (but not only) in connection
with the associated mean flow, which appears when either (i) viscous effects are
weak, or (ii) the aspect ratio is large. Case (i) involves a streaming flow produced
by averaged viscous stresses in oscillatory boundary layers, which requires a fairly
involved analysis, already performed in various limiting cases, at both moderate
(Higuera, Vega & Knobloch 2002; Martı́n, Martel & Vega 2002) and large aspect
ratio (Vega, Knobloch & Martel 2001; Lapuerta, Martel & Vega 2002; Vega &
Knobloch 2003). This paper is concerned with case (ii) for arbitrary viscosity and
can be considered as the weakly nonlinear extension of the linear analysis by Kumar
& Tuckerman (1994). The mean flow in case (ii) is associated with the long wave
deformational modes (see below) and is slaved to the free-surface deformation. This is
in contrast with other mean flows that appear in, for example, strictly inviscid water
waves (Davey & Stewartson 1974), Poiseuille flow (Davey, Hocking & Stewartson
1974), and Rayleigh–Benard convection (Zippelius & Siggia 1982). Most theoretical
studies in the viscous limit (Beyer & Friedrich 1995; Müller et al. 1997; Cerda &
Tirapegui 1998; Mancebo & Vega 2002) are linear. Nonlinear terms have been
considered in the viscous limit only by Chen & Viñals (1999), who in fact considered
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Figure 1. Sketch of the fluid domain.

three-dimensional deep containers, but ignored both spatial modulation and the mean
flow.

The main objective of this paper is to include these two effects and calculate the
relevant amplitude equations, including the quantitative calculation of the coefficients
in the limits of both shallow (in § 3) and deep (in § 4) containers, which lead to
qualitatively different equations. These equations are new and we claim that they are
the correct amplitude equations. In addition, we shall consider the small-viscosity limit
(in § 3.1 and § 4.1), to compare the values of the coefficients calculated in this paper
with previous results in the literature, which had been controversial (Hansen &
Alstrom 1997). The results compare quite well with asymptotic calculations by
Mancebo & Vega (2004), who included some subtle effects at small viscosity that lead
to O(1)-corrections in the coefficients and have not been considered before. This will
completely close a long-standing controversy concerning the calculation of the cubic
coefficient in deep containers; a similar analysis in shallow containers remains to be
done. Section 5 gives some concluding remarks concerning the scope and consequences
of the main results. For illustration, the coefficients of the amplitude equations will be
calculated in some experimental conditions taken from some experiments on Faraday
waves in the literature to conclude that all the limits considered in this paper are
experimentally accessible.

2. Formulation
In order to clarify the role of the mean flow, we consider the restricted two-

dimensional case: a laterally unbounded fluid layer with periodic boundary conditions.
This is a model of a three-dimensional annular container whose width is small
compared to length, but large compared to both depth and the wavelength of the
excited surface waves. In this case, radial modulations and the effects of both the
curvature of the annulus and the inner and outer walls (Benjamin & Scott 1979;
Benjamin & Graham-Eagle 1985) are expected to be small.

We consider a horizontal fluid layer (figure 1) of unperturbed depth d∗ and length
L∗, which is vibrating vertically with an amplitude a∗ and a frequency 2ω∗. We use
a Cartesian coordinate system with the y = 0 axis at the unperturbed free surface,
and non-dimensionalize length and time with (ν/ω∗)1/2 and 1/ω∗, respectively, where
ν is the kinematic viscosity. The governing equations and boundary conditions are
obtained from the standard velocity–pressure formulation (Batchelor 1967) using
the streamfunction ψ defined such that the velocity (u, v) = (−ψy, ψx), the vorticity
Ω , and the free-surface elevation f . The definition of vorticity and the momentum
equations lead to

ψxx + ψyy = Ω, Ωt − ψyΩx + ψxΩy = Ωxx + Ωyy in − d < y < f, (2.1)
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(2.2)

account for the equilibrium of normal stresses, kinematic compatibility and free
tangential stress, respectively. No slip at the bottom, horizontal periodicity and
volume conservation yield

ψ = ψy = 0 at y = −d, (2.3)

(ψ, Ω)(x +L, y, t) ≡ (ψ, Ω)(x, y, t), f (x +L, t) ≡ f (x, t),

∫ L

0

f dx = 0. (2.4)

The resulting problem depends on the depth d , the length L, the forcing amplitude a,
the gravitational parameter G, and the surface tension parameter S, defined as

(d, L, a) =

(
ω∗

ν

)1/2

(d∗, L∗, a∗), G =
g

(νω∗3)1/2
, S =

σ

ρ(ν3ω∗)1/2
, (2.5)

where g is the acceleration due to gravity, σ is the surface tension, and ρ is the
density. We shall perform a long-wave weakly nonlinear analysis, which requires that
the aspect ratio be large and the forcing amplitude be appropriately close to its
threshold value ac, namely

L � d, kcL � 1, |a − ac| � ac, (2.6)

where ac and kc are calculated from the problem obtained upon linearization in (2.1)–
(2.4) around the quiescent flat state Ω ≡ ψ ≡ 0, f ≡ 0. If we seek normal modes of
the form (ψ, Ω, f ) = (ψ0(y, t), Ω0(y, t), f0(t))e

ikx , with k � L−1, then we obtain

ψ0yy − k2ψ0 = Ω0, Ω0t = Ω0yy − k2Ω0 in − d < y < 0, (2.7)

ik(G + Sk2)f0 − ψ0yt − 4iakf0 cos 2t − 3k2ψ0y + ψ0yyy = 0,

f0t − ikψ0 = ψ0yy + k2ψ0 = 0 at y = 0,

}
(2.8)

ψ0 = ψ0y = 0 at y = −d. (2.9)

The marginal modes (non-trivial periodic solutions) are calculated by a numerically
cheap method (Kumar & Tuckerman 1994). These solutions exist only along some
marginal instability curves, a vs. k, such as those plotted in figure 2(a), which
correspond to a Floquet multiplier equal to either 1 (labelled harmonic, H) or −1
(subharmonic, S). Since instability sets in above the marginal instability curves, the
absolute minimum of these curves yields the amplitude instability threshold in infinite
domains, ac, attained at a wavenumber kc. A plot of ac vs. d2 for the indicated values of
Gd3 and Sd (which are independent of the forcing frequency) is given in figure 2(b).
Assuming that d is not too small, which would require a large forcing amplitude
(figure 2b, see also Mancebo & Vega 2002), the first instability is subharmonic and
the eigenfunctions of (2.7)–(2.9) are such that

(ψ0, Ω0) (y, t + π) ≡ −(ψ0, Ω0)(y, t), f0(t + π) ≡ −f0(t); (2.10)
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Figure 2. Linear stability of the flat state in shallow containers for subharmonic (S) and
harmonic (H) modes, as calculated by Mancebo & Vega (2002). (a) Marginal instability
curves of (2.7)–(2.9) for G = S = d = 1. (b) The instability threshold, ac ≡ a∗

c (ω
∗/ν)1/2 vs.

d2 ≡ d∗2ω∗/ν for the following values of Gd3 ≡ gd∗3/ν and Sd ≡ σd∗/(ρν2): Gd3 = Sd = 1
(−−−); (Gd3, Sd) = (1, 0) (– – –); (Gd3, Sd) = (0, 1) (· · ·).

thus (ψ0, Ω0) (y, t + 2π) ≡ (ψ0, Ω0) (y, t), f0(t + 2π) ≡ f0(t), and

〈ψ0〉t ≡ 〈Ω0〉t ≡ 〈f0〉t ≡ 0, (2.11)

where the temporal mean value 〈·〉t is defined as

〈g〉t =
1

2π

∫ 2π

0

g(t) dt. (2.12)

Also, the eigenfunctions can be selected such that

iψ0, iΩ0, f0 are real, (2.13)

which means that the mode is a standing wave (SW).
In addition to these SWs, we have a mean flow that is associated with the long-wave

deformational modes. These exhibit the dispersion relation λ= − Gd3k2/3+O(k4), as
k → 0. Thus, they are nearly marginal in large domains (λ is small for small k), and
must be also considered.

3. Low-frequency or shallow layer: kcd ∼ 1

Here, we consider the distinguished limit kc ∼ d ∼ G ∼ S ∼ 1, |a − ac| ∼ L−2 � 1, in
which we are anticipating the convenient relation between a − ac and L in order that
as many terms as possible are of the same order in (3.3) below. We introduce the
rescaled bifurcation parameter Σ and the slow space and time variables ξ and T ,

Σ = L2(a − ac), ξ = L−1x, T = L−2t, (3.1)

and seek the following expansions in powers of the small parameter L−1

(ψ, Ω, f ) = L−1A(ξ, T )(ψ0, Ω0, f0)e
ikcx + c.c. + . . .

+ (L−3ψm(ξ, y, T ), L−3Ωm(ξ, y, T ), L−2f m(ξ, T )) + . . . , (3.2)

where c.c. stands hereinafter for the complex conjugate and only the leading-order
terms associated with the surface waves and the mean flow are displayed (cf. (A 3) in
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Appendix A). It turns out that the mean flow is slaved to the free-surface elevation it
produces. (ψ0, Ω0, f0) and kc are as defined in § 2 and the complex amplitude of the
surface waves, A, and the mean flow variables, ψm, Ωm and f m, are independent of
the short space and time variables x and t (which means that they are slowly varying
in both space and time), and governed by the following coupled amplitude–mean flow
(CAMF) equations, which are derived in Appendix A,

AT = α1Aξξ + α2ΣA + α3A|A|2 + α4f
mA, f m

T =
Gd3

3
f m

ξξ + β1(|A|2)ξξ . (3.3a, b)

The various terms on the right-hand side of (3.3a) account for sideband diffusion,
departure from the threshold, standard cubic nonlinearity and coupling to the mean
flow; additional terms depending on the derivatives of ψm are higher order if d

is bounded (but see Appendix B). The two terms on the right-hand side of (3.3b)
account for the restoring effect of gravity and coupling to the surface waves. The
boundary conditions,

A(ξ + 1, T ) ≡ eiδA(ξ, T ), f m(ξ + 1, T ) = f m(ξ, T ),

∫ 1

0

f m dξ = 0, (3.4)

result from (2.4) and the spatial detuning δ is the mismatch between the basic
wavelength and the length of the domain, namely

δ = kcL (mod 2π) with − π < δ � π. (3.5)

The coefficients α1, . . . , α4, and β1 are all real (as could have been anticipated from
invariance under the action A → Ā= complex conjugate of A, which results from
horizontal reflection), and are plotted vs. d2 in figure 3 for the indicated values of Gd3

and Sd . No comparison is possible with previous analyses in the literature because
these coefficients (in particular, α3 and β1) have not been calculated before. Note that
α1 and α2 are both positive; α3 exhibits both signs, and is negative for large d; when
it is positive (roughly, for d2 < 7 in figure 3), the dynamics are subcritical, namely
the solution either converges to the trivial state A= f m = 0 (when this is stable and
initial conditions are sufficiently small), or diverges for large time. Thus, interesting
dynamics can only occur if α3 < 0, as we assume hereinafter. The term α4 also exhibits
both signs and β1 is negative.

Considering the generic case in which all coefficients in (3.3) are non-zero, we
introduce the new variables defined as

B =

(
−α3

α1

)1/2

A, φξ = −α4

α1

f m, τ = α1T , (3.6)

to rewrite (3.3) and (3.4) as

Bτ = Bξξ + µB − B|B|2 − φξB, φτ = γ1φξξ − γ2(|B|2)ξ , (3.7a, b)

B(ξ + 1, τ ) = eiδB(ξ, τ ), φ(ξ + 1, τ ) = φ(ξ, τ ),

∫ 1

0

φ(ξ, τ ) dξ = 0, (3.8)

where the last integral condition is imposed only to avoid the spurious symmetry
φ → φ + constant, δ is still as defined in (3.5), and

µ =
α2Σ

α1

, γ1 =
Gd3

3α1

, γ2 = −α4β1

α1α3

. (3.9)
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Figure 3. The coefficients α1, . . . , α4 and β1 appearing in (3.3) in terms of d2 for the values of
Gd3 and Sd indicated in the caption of figure 2; in the semilogarithmic plot (d), α4 changes
sign at d2 
 32.3 and is positive on the left-hand side.

Note (figure 4) that γ1 > 0, but γ2 is negative and fairly large for d2 ∼ 1, and positive
and small for large d2; the change of sign at d2 
 32.3 is due to the change of sign
of α4.

The rescaled CAMF equations (3.7) have been obtained using symmetry arguments
by Coullet & Iooss (1990) in their analysis of spatially periodic patterns, and by
Matthews & Cox (2000) in their study of a system with a conservation law that
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Figure 4. The coefficients of (3.7), γ1 and |γ2| (γ2 vanishes at d2 ∼ 32.3, and is positive to the
right-hand side of this value) in terms of d2 for the values of Gd3 and Sd indicated in the
caption of figure 2. Only the part of these curves corresponding to negative values of α3 is
considered.

is invariant under the O(2) group generated by reflection and translations. We also
have invariance under O(2) and the free-surface elevation is a conserved quantity
because of volume conservation (the second boundary condition (2.2) can be written
as ft = [ψ (x, f (x, t), t)]x). For this reason (3.7)–(3.8) are also obtained in large-aspect-
ratio viscous fluid systems with a free surface, when a stationary (or a SW) mode
with a non-zero wavenumber is destabilized, as in Bénard–Marangoni convection
(Golovin, Nepomnyashchy & Pismen 1994).

Equations (3.7)–(3.8) are invariant under the four actions

ξ → −ξ, φ → −φ; B → B̄; ξ → ξ + c1; B → eic2B,

for arbitrary constants c1 and c2, which result from the invariance of the original
problem (2.1)–(2.4) under O(2), but generate a larger symmetry group. The additional
symmetries are an artefact of truncation and need not be present at higher order.
Thus they must be interpreted with care (Knobloch 1995).

The simplest steady states of (3.7)–(3.8) (|B| = constant) correspond to spatially
uniform SWs, which are in branches that bifurcate from the trivial state at µ = δ2

n,
with δn = δ + 2nπ for n= 0, ±1, ±2, . . . . The linear stability of these is analysed in
Appendix C and illustrated in figure 5. At the secondary instability points, which can
be either stationary or oscillatory (Appendix C), new branches of steady or periodic
solutions appear that are no longer spatially uniform. Further stability properties of
non-uniform steady states have been analysed by Norbury, Wei & Winter (2002) (in
the limit |µ| � 1 and the restricted case δ = 0, B = real) and by Vega (2005) in the
general case. Summarizing these results, the system exhibits a Lyapunov function if
γ2 � 0, which means that all bounded solutions converge to steady states for large
time. In fact, all solutions are bounded if γ1 +γ2 � 0. If instead γ1 +γ2 < 0, then some
solutions diverge at finite time and most steady states with non-constant amplitude
are unstable (Vega 2005), but the system also exhibits non-uniform steady states that
are exponentially stable (Norbury et al. 2002). Note (figure 4) that all these cases
occur in practice.
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Figure 5. Stable (−−−) and unstable (– – –) uniform steady states of (3.7)–(3.8), which
correspond to SWs with spatially constant amplitude (called spatially uniform SWs along
the paper) of the system, for: (a) γ1 +γ2 > 0 and (b) γ1 +γ2 < 0; all instabilities are stationary if
γ2 < 0, but some of them can be oscillatory if γ2 > 0. (a) also applies to the amplitude equation
(3.12) with Γ > − 1.
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Figure 6. The coefficient Γ appearing in (3.12) vs. d2 = d∗2ω∗/ν for G/d ≡ g/(d∗ω∗2) = 3.5
and S/d3 ≡ σ/(ρd∗3ω∗2) = 0 ( ) and 0.5 ( ). As in figure 4, we are only plotting that
part of the curve corresponding to negative values of α3.

3.1. The limit of small viscosity: G � 1, S � 1, kcd ∼ 1

Using the estimates (A 36), (A 38), (A 39) and (A 40) in Appendix A, we obtain
that as either G � 1 or S � 1 viscous effects are weak and ε = k2

c � 1; if in addition
d ∼ k−1

c � 1, then depth is comparable to wavelength, and the container is not deep (cf.
§ 4.1). Using the definition (3.9), we obtain readily that γ1 ∼ |γ2| ∼ ε−1/2 � 1. Thus, the
two terms on the right-hand side of (3.7b) are both large and two time scales appear
in (3.7)–(3.9). In a short time scale τ ∼ d−2, the free-surface elevation approaches the
pseudo-steady-state

φξ = Γ (|B|2 − 〈|B|2〉ξ ), (3.10)

where the spatial mean value 〈·〉ξ and the parameter Γ (plotted in figure 6) are
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defined as

〈|B|2〉ξ =

∫ 1

0

|B|2 dξ, Γ =
γ2

γ1

≡ −3α4β1

α3Gd3
. (3.11)

Substituting (3.10) into (3.7a), we obtain the following non-local Ginzburg–Landau
(NLGL) equation for the evolution of B in the time scale τ ∼ 1

Bτ = Bξξ + µB − (1 + Γ )|B|2B + Γ 〈|B|2〉ξB, B(ξ + 1, τ ) ≡ eiδB(ξ, τ ). (3.12)

The non-local term is due to the mean flow and thus has never appeared in previous
analyses of Faraday waves. This is a particular case of a more general NLGL equation
that exhibits complex coefficients and applies in a variety of contexts (Martel & Vega
1996 and references therein). The NLGL equation (3.12) also appears with real
coefficients from the outset in the analysis of steady bifurcations of systems involving
non-local terms (e.g. ferromagnetic resonance or current instability, Elmer 1988).

The simplest steady states of (3.12) with constant |B| (SWs) and their linear
stability have been analysed (Elmer 1988); see also Appendix C, where it is seen
that the bifurcation diagram in figure 5(a) applies. More general SWs have been
considered by Norbury et al. (2002) (restricted case δ =0, B = real, and |µ| � 1) and
Vega (2005) (general case). Vega, in particular, shows that all SWs with non-constant
|B| are unstable if Γ � 0, which is precisely the case for viscous Faraday waves (see
figure 6). Since, in addition, the NLGL equation (4.4) exhibits a Lyapunov function,
the large-time dynamics are dominated by the stable spatially uniform SWs.

4. High-frequency or deep layer: kcd � 1

We now assume that kc ∼ 1 and d � 1. As explained in Appendix A,

α4 → 0 exponentially as kcd → ∞. (4.1)

Thus, in principle, the surface waves become decoupled from the mean flow in deep
containers. However, as explained in Appendix B, the mean flow produces a new
term (which is negligible for bounded kcd) in the amplitude equation, which becomes
a non-potential Ginzburg–Landau (NPGL) equation, namely (B 6) in Appendix B,
which is

AT = α1Aξξ + α2ΣA + α3A|A|2 + i
α6α8d

4L
(|A|2)ξA, (4.2)

where α1, α2 and α3 are as calculated in Appendix A (with d = ∞) and α6 and α8

are as calculated in Appendix B. All these are plotted in figure 7 after convenient
rescaling (invoking (A 36) and (A 39)) to obtain O(1)-quantities as viscosity goes to
zero.

In the distinguished limit

|a − ac| ∼ L−2,

∣∣∣∣ α3

α6α8

∣∣∣∣ ∼ d

L
= D � 1, (4.3)

(4.2) can be rescaled in terms of the variable B defined in (3.6), as

Bτ = Bξξ + µB − B|B|2 + iγD(|B|2)ξB, B(ξ + 1, τ ) ≡ eiδB(ξ, τ ), (4.4)

where the boundary condition results from the periodicity of the domain, γD ∼ 1,
and

γ =
α6α8

4α3

. (4.5)
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Figure 7. The various coefficients in (4.2) and (4.4) rescaled with G and S (according to (4.8),
(A 39)–(A 40), and (B8)) as follows: (a) (G + S1/3)−4α1, (b) (G + S1/3)α2, (c) (G + S1/3)4α3,
(d) (G + S1/3)−2α6, (e) (G + S1/3)α8, and (f ) (G + S1/3)−5γ , in terms of S−2 ≡ ρ2ν3ω∗/σ 2 for
fixed values of G/S3 ≡ ρ3gν4/σ 3: 0 ( ), 10−3(· · ·), 10−2 ( · ), 10−1 ( ), and 1 ( ).

The coefficient γ is plotted in figure 7(f ). Note that it is always negative and that
|γ | � 1 as assumed provided that G + S1/3 is (even moderately) large; see § 4.1. The
NPGL equation (4.4) differs from the standard Ginzburg–Landau (GL) equation
with real coefficients only in the last term appearing in the right-hand side. This
term does affect qualitatively the dynamics because it (i) prevents the existence of a
Lyapunov function (thus the bounded solutions need not converge to steady states
for large time), and (ii) breaks a spurious reflection symmetry because the equation
is only invariant under the actions

ξ → −ξ, B → B̄; ξ → ξ + c1; B → eic2B, (4.6)
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Figure 8. Stable ( ) and unstable ( ) spatially uniform SWs of (4.4) for (a) 2γDδ > 1
and (b) 2γDδ < 1.

while the real GL equation is invariant under ξ → − ξ and B → B̄ separately. One of
these symmetries is spurious because the original problem exhibits only one reflection
symmetry, namely x → −x. Also, all solutions of the NPGL equation are bounded
as τ → ∞, as seen from the exact relation

1

2

d

dτ
〈|B|2〉ξ = −〈|Bξ |2〉ξ + µ〈|B|2〉ξ − 〈|B|4〉ξ ,

where 〈·〉ξ is defined in (3.11). This relation is obtained multiplying (4.4) by B̄ , taking
the real part, and proceeding as usual. The uniform steady states of (4.4) correspond
again to spatially uniform SWs and are of the form B =Bn =

√
µ − δ2

n exp iδnξ ,
with δn = δ + 2πn, for n= 0, ±1, ±2, . . . . The linear stability of these is analysed in
Appendix C and illustrated in figure 8. Note that:

(i) If 2γDδ � 1, then the whole first branch (n = 0) is stable and the remaining
branches are stable if 2γDδn < 1 and Rn > 2

√
(δ2

n − π2)/(1 − 2γDδn) and are unstable
otherwise.

(ii) If 2γDδ > 1, then the first branch is stable if 0 <R0 < 2
√

(π2 − δ2)/(2γDδ − 1)
and unstable otherwise. The remaining solutions are unstable if either n> 0 or if

n< 0 and Rn < 2
√

(π2 − δ2)/(2γDδ − 1) and stable otherwise. Note that if 0 <δ < π
and γD is sufficiently large, then the first branch is stable only in the close vicinity of
the threshold and there are values of µ such that no spatially uniform SW is stable,
meaning that the large-time dynamics must involve more complex states (at least,
spatially modulated SWs).

4.1. Small-viscosity limit: G � 1, S � 1, kcd � 1

As explained in Appendix A, either G or S1/3 is large in this limit. Since we have
now a deep layer, kcd � 1, the inviscid dispersion (A 37) relation simplifies to

k0c

(
G + k2

0cS
)

= 1. (4.7)

Thus, kc 
 k0c ∼ (G + S1/3)−1 � 1. In order to compare with nearly inviscid analyses
in the literature, we use the parameters defined in (A 38), namely

S =
k2

0cS
k2

0cS + G ∼ 1, ε = k2
0c ∼ 1(

G + S1/3
)2

� 1. (4.8)
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According to the estimates (A 39) and (B 8) in Appendixes A and B,

β̃1 =
α6α8ε

1/2

4
∼ 1, β̃2 =

α3

ε2
∼ 1, (4.9)

which means that the coefficients γ and D can be replaced by

γ̃ =
β̃1

β̃2

∼ 1, D̃ =
D

ε5/2
∼ 1 (4.10)

in (4.5), which is rewritten here for convenience,

Bτ = Bξξ + µB − B|B|2 + iγ̃ D̃(|B|2)ξB, B(ξ + 1, τ ) ≡ eiδB(ξ, τ ). (4.11)

Note that β̃1 accounts for the effect of the mean flow, but β̃2 is just a rescaled
version of the cubic coefficient α3. Now we check the asymptotic values of these two
quantities calculated in the literature.

The mean flow has been considered only by Mancebo & Vega (2004), who calculated
the following asymptotic expression

β̃1 
 1 + 2S

2
. (4.12)

This approximation is compared with its exact value calculated above in figure 9(a).
Note that the agreement is quite good for ε < 0.005.

Comparison of the rescaled cubic coefficient β̃2 shows quite good agreement with
the exact calculation by Chen & Viñals (1999) for ε = 10−4, but O(1) discrepancies
with all asymptotic results in the literature (figure 9b) because (i) β̃2 shows a extreme
sensitivity on wavenumber at low viscosity, and (ii) all asymptotic calculations of β̃2

in the literature have been made at the inviscid value of kc, kc0. These two points
have been explained in a careful asymptotic analysis by Mancebo & Vega (2004),
who showed that the above-mentioned wavenumber shift, kc − kc0, has an O(1) effect
on β̃2. In order to illustrate that, we calculate the cubic coefficient β̃2 using the exact
expression (A 23) (with j = 3 and d = ∞) at (a) k = kc and (b) at k = kc0; the latter
is denoted as β̃20. The difference between both is labelled β̃21 and is plotted vs. S

in figure 9(c) for the indicated values of ε, together with the following asymptotic
approximation as ε → 0 calculated by Mancebo & Vega (2004)

−β̃21 =
4

1 + 2S

(
2

1 + 3S
− 3S

1 − 3S
+

9S

4

)
. (4.13)

Note that the agreement is quite good. These results open the question of whether the
former approximations in the literature (which ignored the wavenumber shift) could
approximate well the cubic coefficient calculated at kc0. The answer is again no, as
shown in figure 9(d). Thus there must be additional mistakes in former calculations,
which cannot be safely used, and we do not have an asymptotic result available for
β̃20. However, the exact calculation plotted in figure 9(b) for quite small ε can be
taken as a safe mark for any asymptotic calculation; note that the associated value
of β̃2 has been checked against independent calculations by Chen & Viñals (1999).
For completeness, we have obtained (by mean squares fit with the exact solution for
ε =10−5, with a maximum relative error of 10−2) the following empirical asymptotic
expression for the rescaled cubic coefficient

−β̃2 = − 1

30(1 − 3S)2
+

61S

10(1 − 3S)2
+

4 − 9S

3(1 + 2S)(1 − 9S2)
+

S

10
+

4

9
. (4.14)
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Figure 9. The nonlinear coefficients (a) β̃1 and (b) −β̃2 defined in (4.9); (c) the effect of the
viscous wavenumber shift, −β̃21; and (d) −β̃20 = the value of −β̃2 calculated at k = kc0. (—–)
as given by the asymptotic expressions (4.12), (4.14), (4.13) and (4.15), respectively; (− − −) as
calculated in this paper for ε = 1.25 × 10−2, 5 × 10−3, 5 × 10−4, and 10−4 (the arrows indicate
decreasing values of ε); ( · ) as calculated by Zhang & Viñals (1997) for ε → 0, and (�)
as calculated by Hansen & Almstrom (1997) for ε → 0 and S = 1. The result for ε = 10−4 in
(b) is indistinguishable from the exact calculation by Chen & Viñals (1999) (�), which has been
kindly provided to us by Peilong Chen. In fact, the cubic coefficient calculated in this paper
is eight times that calculated by Zhang & Viñals (1997), Hansen & Almstrom (1997), and
Chen & Viñals (1999) owing to differences in the scaling of the eigenfunctions.

This expression has been plotted with a solid line in figure 9(b), and combined with
(4.13) yields the following expression, which is plotted with a solid line in figure 9(d),

−β̃20 = −β̃2 + β̃21. (4.15)

5. Concluding remarks
The amplitude equations derived above are all new in the context of Faraday waves.

They have been obtained in various limiting cases:
1. For shallow containers, the relevant equations are the CAMF equations (3.3),

whose coefficients are plotted in figure 3 in terms of the non-dimensional depth in the
interval where the cubic coefficient α3 is negative. For smaller values of d , α3 is positive
and the dynamics are subcritical. In the supercritical case, the amplitude equations
are rewritten in the form (3.7)–(3.8), with the coefficients γ1 and γ2 as plotted in
figure 4. The simplest spatially uniform SWs are illustrated in the bifurcation diagrams
in figure 5. As explained in § 3, depending on the signs of γ2 and γ1+γ2, the solutions of
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the amplitude equations can either be bounded for large time or not, either converge
to spatially uniform SWs for large time or not, and either possess asymptotically
stable spatially modulated SWs or not. Note that if γ1 +γ2 > 0 (which occurs for large
values of d2 in figure 4), all spatially uniform SWs are unstable for large µ (figure 5b)
and the system exhibits spatially modulated SWs that are stable; but in this case,
the system also shows solutions that diverge for finite time. If γ1 + γ2 < 0, the system
always exhibits spatially uniform SWs that are stable (figure 5b) and thus are a priori
the best candidates for being observed at large time.

2. At small viscosity, the system (3.7) reduces to the NLGL equation (3.12), with
the non-local coefficient Γ > 0 plotted in figure 6. As explained in § 3.1, the bifurcation
diagram is as that in figure 5(a) and all solutions converge to spatially uniform SWs
for large time.

3. In deep containers and significant viscous effects, the coefficient γ2 (accounting
for coupling to the mean flow) in (3.7) converges to zero. However, since depth is
large, the mean flow is stronger and a new coupling effect comes into play that leads
to the NPGL equation (4.2) (or its rescaled version (4.4)). This equation contains a
non-potential term (namely, the last term in (4.2) or (4.4)) that is small (recall that
D = d/L � 1) unless |γ | � 1, which occurs for (even moderately) small viscosity. This
term breaks a spurious symmetry and prevents the existence of a Lyapunov function.
Thus, the dynamics are expected to be richer in this case. The spatially uniform SWs
and their linear stability are analysed in Appendix C, and illustrated in figure 8. As
explained in § 4, if 0 <δ < π and γD is large (which is easily attained if viscosity is
really small, see § 4.1), then there are values of µ such that no spatially uniform SW is
stable, suggesting that the large-time dynamics must include more complex attractors
that spatially uniform SWs.

4. At quite small viscosity, the coefficient γ is large and a new scaling applies (see
(4.11)). According to (4.9)–(4.10), the rescaled coefficient γ̃ depends on the coefficients
α6 and α8 (which are associated with the mean flow) and on the cubic coefficient α3.
The product of α6 and α8 (in fact, its rescaled version, β̃1, see (4.9)) is compared (with
satisfactory results) in figure 9(a) with its rescaled asymptotic value for small viscosity
calculated by Mancebo & Vega (2004); this is the only work in the literature where
mean flows have been considered in connection with standing Faraday waves. The
cubic coefficient α3 instead has been calculated in various works, with controversial
results, as noted by Hansen & Almstrom (1997), always for small viscosity and deep
containers. Comparison with the exact results by Chen & Viñals (1999) is quite
good, which was to be expected. Comparison with any other asymptotic results
is bad because, as explained further by Mancebo & Vega (2004), all these results
are incorrect. This is because all these analyses have ignored the effect of a shift
of the wavenumber at the threshold owing to the interplay between viscous effects
and parametric forcing; this shift has a O(1) effect on the numerical value of the
cubic coefficient. Comparison with the asymptotic expression for this wavenumber
shift in Mancebo & Vega (2004) in figure 9(c), is quite good. Unfortunately, the
correct calculation of the cubic coefficient at small viscosity is quite involved and
outside the scope of this paper. In order to check any asymptotic calculation of
this coefficient in the future, we give an expression (equation (4.14)), obtained by
empirical fit with the exact results for ε = 10−5, which is exact within O(10−2)-relative
errors.

5. At small viscosity, the equations obtained above are correct immediately after
the threshold. Further departure from the threshold leads to more general equations,
which are derived and discussed by Mancebo & Vega (2004).
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Experi- ρ ν σ d∗ 2ω∗ G S d kc

ment g cm−3 cm2 s−1 dyn cm−1 cm Hz

HW 0.9 4.3 10 6 50–110 0.233–0.072 0.096–0.095 36.5–54.1 0.64–0.65
E 1.22 1.02 67.6 0.29 51–100 0.476–0.174 4.06–3.05 3.67–5.12 0.56–0.62
B 0.84 0.25 26.2 1.0 54–137 0.845–0.220 18.82–12.02 26.4–41.3 0.34–0.43
KG 0.85 0.5 27 0.3 42–57 0.90–0.58 7.84–6.74 4.91–5.70 0.43–0.47
L 0.8 0.41 30 0.25 52–102 0.74–0.26 11.2–7.97 4.99–7.01 0.41–0.48
W 0.89 0.036 18.3 2 20–100 10.33–0.927 374–167 83.2–186 0.10–0.17

Table 1. The values of the non-dimensional parameters G, S and d , and the non-dimensional
wavenumber at the threshold for various experimental conditions in the literature:
HW (Hoffmann & Wolf 1974); E (Edwards 1994; unpublished results that can be found
in, e.g. Cerda & Tirapegui 1998); B (Bechhoefer et al. 1995); KG (Kudrolli & Gollub 1997);
L (Lioubashevski, Fineberg & Tuckerman 1997); and W (Westra et al. 2003).

Experiment γ1 −γ2 −γ ε S −γ̃ AE

HW > 103 < 10−8 3.06–3.02 3.3–4.31 – – (4.4)
E 1.44–1.92 9.25–3.39 – – – – (3.7)
B > 100 < 10−4 18.2–13.9 0.11–0.18 – – (4.4)
KG 2.90–3.60 2.83–2.13 – – – – (3.7)
L 1.67–2.51 1.44–0.71 – – – – (3.7)
W > 102 < 10−6 194–255 0.0062–0.03 0.184–0.84 0.0061–0.038 (4.11)

Table 2. The various coefficients appearing in the amplitude equations (3.7), (3.7) and (4.11)
for the experiments described in table 1. AE indicates the amplitude equation that applies to
the experiment.

6. In order to have an idea of the scope of the equations derived above, we consider
the values of the parameters G, S and d , and the wavenumber at the threshold in
the experimental conditions quoted in tables 1 and 2, which are discussed below.

(a) The container is shallow (kcd ∼ 1) and viscosity is significant (G + S ∼ 1) in
the experiments E, KG and L, in which the CAMF equations (3.7) apply. Note
that γ1 ∼ γ2 ∼ 1 in KG and L, meaning, that the mean flow and the cubic nonlinea-
rity play similar roles in these cases, whereas γ1 ∼ 1 but γ2 � 1 in E, meaning
that the fundamental nonlinearity is provided by the mean flow in this case.
(b) The container is deep (kcd � 1) and viscous effects are significant (G+S ∼ 1)
in HW and B, in which the NPGL equation (4.4) applies, with the coefficient γ

as given in table 2. Note that −γ is (at least somewhat) large in both cases, as
assumed.
(c) The container is deep and viscosity is small in the experiment W. Thus, (4.11)
applies, with γ̃ as indicated in table 2.
(d) As explained at the beginning of § 2, if the two-dimensional model above is
to be used as an approximation of an annular container, width must be small
(say, one tenth) compared to length, but large (say, ten times) compared to depth.
This imposes that d/L = d∗/L∗ be of the order of 0.01, which means that:

(i) L∗ must be quite large, say 600 cm, in the experimental conditions HW.
(ii) D = d/L is quite small in the experiments HW and B, meaning that the
non-potential term in (4.4) is quite small. Thus this equation reduces to the
standard Ginzburg–Landau equation with real coefficients in these two cases,
which shows trivial dynamics.
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(iii) In the experiment W instead γ̃ D̃ ≡ γD ∼ 1 and the role of the non-
potential term is significant provided that L∗ ∼ 200 cm.
(iv) In the remaining experiments, in which (3.7) applies, L∗ ∼ 100d∗ takes
reasonable values (ranging from 25 to 30 cm), and γ2 is never small compared
to γ1. Thus the mean flow plays a significant role in these cases.

7. The cubic coefficient α3 appearing in the unscaled amplitude equations (3.3) and
(4.2) is negative in all experimental conditions in table 2 and also in the remaining
experiments (which have also been checked but are not included in table 2 for the
sake of brevity) by Hoffman & Wolf (1974), Bechhoefer et al. (1995), Kudrolli &
Gollub (1997), Lioubashevski et al. (1997) and Westra et al. (2003). Positive values of
α3, which lead to a subcritical primary bifurcation never encountered experimentally,
would require either a more viscous fluid, or a smaller depth (or a lower vibrating
frequency). Some care must be taken when doing this because the primary instability
need not be subharmonic as either ν is too large, or d∗ is too small, or ω∗ is too small
(Mancebo & Vega 2002). Note that this subcritical transition appears when viscosity
and depth effects are both significant; detuning instead plays no role. Thus this is of
a completely different nature to the subcritical transition encountered at low viscosity
for appropriate signs of detuning (Miles & Henderson 1990).

8. A physical explanation of this subcritical transition as the forcing frequency
ω∗ → 0 (which yields d → 0, see (2.5)) follows noting that in this limit (a) time-
derivatives are small (thus the solution follows a pseudo-steady state) and (b) effective
‘gravity’, g̃(t∗) = g + 4a∗ω∗2 cos 2ω∗t∗, points upwards in a part of the period, in
which the Rayleigh–Taylor instability (Chandrasekhar 1961) comes into play. The
simplest (non-flat) SWs of the system should approach a non-flat pseudo-steady state
(associated with the Rayleigh–Taylor instability) in a part of the period and the flat
state in the remaining part of the period. Thus, existence of non-flat SWs of the
Faraday system should require existence of non-flat steady states of the Rayleigh–
Taylor system with an effective gravity g̃. But the primary bifurcation from the flat
state to non-flat steady states in the Rayleigh–Taylor system is subcritical (Lapuerta,
Mancebo & Vega 2001 and references therein).

9. As indicated at the beginning of § 2, the two-dimensional problem laterally
unbounded layer considered in this paper should describe well, even quantitatively,
Faraday waves in a three-dimensional annular container whose width is small
compared to length, but large compared to depth. Of course, the one-dimensional
Faraday waves considered above can only describe two-dimensional patterns in the
three-dimensional container consisting of rolls oriented in the radial direction. Neither
azimuthal rolls nor more complex patterns (e.g. squares, hexagons, quasi-patterns)
can be described by the theory above. Note, that as shown by Zhang & Viñals (1997)
and Chen & Viñals (1999), rolls (instead of squares, hexagons, etc.) are precisely the
patterns that must be expected at large aspect ratio near the threshold provided that
either viscosity is not too small (without further restrictions) or viscosity is small but
capillary effects are sufficiently small compared to gravitational effects (namely, the
parameter S defined in (4.8) is sufficiently small), and radial rolls are (perpendicular
to the lateral boundaries and thus) the expected ones for generic initial conditions
(see the various pictures involving rolls given by Kudrolli & Gollub 1997).

The analysis in this paper intends to provide a complete quantitative theory of one-
dimensional standing Faraday waves in two-dimensional large-aspect-ratio containers.
This is a first step to the analysis of three-dimensional large-aspect-ratio containers,
which is lacking today. Current three-dimensional theory has always ignored both the
mean flow (the only exception is the phenomenological model in Vega, Rüdiger &
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Viñals 2003) and finite-depth effects (a toy model has been introduced for shallow
containers by Westra et al. 2003) and thus this theory has been successful only in
explaining the first bifurcation at threshold in deep containers (Westra et al. 2003). We
hope that the analysis in this paper will stimulate further theoretical and experimental
analyses of Faraday waves in large-aspect-ratio containers, with special emphasis on
the mean flow, which is necessary to build a correct theory on the wave dynamics
beyond threshold.

This work was partially supported by the National Aeronautics and Space
Administration Grant NNC04GA47G and the Spanish Ministry of Education Grant
MTM2004-03808.

Appendix A. Derivation of the CAMF equations (3.3)
Here, we derive the CAMF equations (3.3) that apply in shallow containers, namely

AT = α1Aξξ + α2ΣA + α3A|A|2 + α4f
mA, f m

T =
Gd3

3
f m

ξξ + β1(|A|2)ξξ , (A 1a, b)

where Σ , ξ and T are as defined in (3.1), namely

Σ = L2(a − ac), ξ = L−1x, T = L−2t. (A 2)

To this end, we expand the solution in powers of the small parameter L−1, as

(ψ, Ω, f ) = L−1A(ψ0, Ω0, f0)e
ikcx + c.c.

+L−2[iAξ (ψ11, Ω11, f11)e
ikcx + A2(ψ12, Ω12, f12)e

2ikcx + c.c. + (0, 0, f m)]

+L−3[Aξξ (ψ1, Ω1, f1) + ΣA(ψ2, Ω2, f2) + |A|2A(ψ3, Ω3, f3)

+ f mA(ψ4, Ω4, f4)]e
ikcx +c.c.+L−3

[(
ψm, Ωm, f m

1

)
+NRT

]
+ . . . , (A 3)

where NRT denotes non-resonant terms, which either (a) depend on x as eimkcx , with
m �= ±1, or (b) are independent of x and exhibit a zero temporal mean. Here, we
are anticipating the dependence of the various terms on the complex amplitude A

and the variables associated with the mean flow. The analysis proceeds in a standard
way, substituting (A 1)–(A 3) into (2.1)–(2.3), setting to zero the coefficients of L−1,
L−2, . . . , and applying solvability conditions to the various equations that provide
resonant terms, which are either oscillatory (namely, proportional to e±ikcx) or slowly
varying in x; the latter are associated with the mean flow. These two contributions
are considered in §§ A.1 and A.2 below.

A.1. Oscillatory terms: first amplitude equation (3.3)

For convenience, we select the eigenfunction of (2.7)–(2.10), (ψ0, Ω0, f0), such that

1

π

∣∣∣∣
∫ π

0

e−itf0(t) dt

∣∣∣∣ = 1.

In order to apply solvability conditions, we consider the adjoint problem

ψ∗
0yy − k2

cψ
∗
0 = Ω∗

0 , −Ω∗
0t = Ω∗

0yy − k2
cΩ

∗
0 in − d < y < 0, (A 4a, b)

ikc

(
G + Sk2

c

)
f ∗

0 + ψ∗
0yt − 4iackc

∫ t

f ∗
0τ (τ ) cos 2τ dτ − 3k2

cψ
∗
0y + ψ∗

0yyy = 0,

f ∗
0t + ikcψ

∗
0 = ψ∗

0yy + k2
cψ

∗
0 = 0 at y = 0, (A 5)
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ψ∗
0 = ψ∗

0y = 0 at y = −d, (A 6)

where the operator
∫ t

is defined as∫ t

g(τ ) dτ =

∫ t

t0

g(τ ) dτ −
〈∫ t

t0

g(τ ) dτ

〉t

, (A 7)

with 〈·〉t as defined in (2.12). The general solution to (A 4)–(A 6) is

(ψ∗
0 (y, t), Ω∗

0 (y, t), f ∗
0 (t)) = C

∫ t

(ψ0(y, −τ ), Ω0(y, −τ ), f0(−τ )) dτ, (A 8)

as is readily seen. For convenience, we select the constant C such that∫ 0

−d

∫ 2π

0

ψ̄∗
0Ω0 dy dt −

∫ 2π

0

[
ik−1

c

(
ψ̄∗

0yyy + ψ̄∗
0yt −3k2

c ψ̄
∗
0y

)
f0 + ψ̄∗

0ψ0y

]
y=0

dt = 1. (A 9)

As a consequence of (2.10)–(2.11) and (A 8), we have

(ψ∗
0 , Ω∗

0 )(y, t + π) ≡ −(ψ∗
0 , Ω∗

0 )(y, t), f ∗
0 (t + π) ≡ −f ∗

0 (t), (A 10)

which implies, in particular, that (ψ∗
0 , Ω∗

0 )(y, t + 2π) ≡ (ψ∗
0 , Ω∗

0 )(y, t), f ∗
0 (t + 2π) ≡

f ∗
0 (t), and 〈ψ∗

0 〉t ≡ 〈Ω∗
0 〉t ≡ 〈f ∗

0 〉t ≡ 0.
The O(L−2) coefficients (ψ12, Ω12, f12) and (ψ11, Ω11, f11) are given by

ψ12yy − 4k2
cψ12 = Ω12, Ω12t = Ω12yy − 4k2

cΩ12 + ikc(ψ0yΩ0 − ψ0Ω0y) (A 11)

in −d <y < 0, with boundary conditions

2ikc

(
G + 4Sk2

c

)
f12 − ψ12yt − 8iackcf12 cos 2t − 12k2

cψ12y + ψ12yyy

= − ikc

(
ψ2

0y + k2
cψ

2
0

)
−

(
ψ0yyyy + 3k4

cψ0

)
f0, f12t − 2ikcψ12

= 2ikcψ0yf0ψ12yy + 4k2
cψ12 = −

(
ψ0yyy + 5k2

cψ0y

)
f0 at y = 0, (A 12)

ψ12 = ψ12y = 0 at y = −d, (A 13)

(ψ12, Ω12) (y, t + 2π) ≡ (ψ12, Ω12) (y, t), f12(t + 2π) ≡ f12(t),

which has a unique solution, and

ψ11yy − k2
cψ11 = Ω11 − 2kcψ0, Ω11t = Ω11yy − k2

cΩ11 + 2kcΩ0 (A 14)

in −d <y < 0, with boundary conditions

ikc

(
G + Sk2

c

)
f11 − ψ11yt − 4ikcacf11 cos 2t − 3k2

cψ11y + ψ11yyy

= i
(
G + 3k2

c S
)
f0 − 4iacf0 cos 2t − 6kcψ0y,

f11t − ikcψ11 = −iψ0, ψ11yy + k2
cψ11 = 2kcψ0 at y = 0, (A 15)

ψ11 = ψ11y = 0 at y = −d, (A 16)

(ψ11, Ω11)(y, t + 2π) ≡ (ψ11, Ω11)(y, t), f11(t + 2π) ≡ f11(t), (A 17)

which is singular because its homogeneous counterpart is (2.7)–(2.9). However, this
problem is solvable because it exhibits the following particular solution

(ψ11, Ω11, f11) = −
(
ψ0kc

, Ω0kc
, f0kc

)
≡ −

(
∂ψ0

∂kc

,
∂Ω0

∂kc

,
∂f0

∂kc

)
, (A 18)
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which is consistent with the fact that kc corresponds to the minimum of the marginal
instability curve, a vs. k (figure 2a). The O(L−3) coefficients in (A 3) are given by

ψjyy − k2
cψj = Ωj − H1j , Ωjt = Ωjyy − k2

cΩj − αjΩ0 + H2j (A 19a, b)

in −d < y < 0, with boundary conditions

ikc

(
G + Sk2

c

)
fj − ψjyt − 4iackcfj cos 2t − 3k2

cψjy + ψjyyy = αjψ0y + h3j (t),

fjt − ikcψj = −αjf0 + h1j , ψjyy + k2
cψj = h2j at y = 0, (A 20)

ψj = ψjy = 0 at y = −d, (A 21)

(ψj, Ωj )(y, t + 2π) ≡ (ψj, Ωj )(y, t), fj (t + 2π) ≡ fj (t), (A 22)

for j = 1, . . . , 4, where the functions H1j , H2j , h1j , h2j and h3j are given by

H11 = −2kcψ11 + ψ0, H21 = −2kcΩ11 + Ω0, h11 = iψ11, h21 = −2kcψ11 + ψ0,

h31 = i
(
4ac cos 2t − G − 3Sk2

c

)
f11 + 3iSkcf0 + 6kcψ11y − 3ψ0y,

H12 = H22 = 0, h12 = h22 = 0, h32 = 4ikcf0 cos 2t,

H13 = 0, H23 = ikc(ψ12yΩ0 + 2ψ12Ω0y − 2ψ0yΩ12 − ψ0Ω12y),

h13 = ikc

(
ψ12yf0 − ψ0yf12 − k2

cψ0f
2
0 /2

)
,

h23 = −
(
ψ12yyy − 4k2

cψ12y

)
f0 +

(
ψ0yyy − 7k2

cψ0y

)
f12 −

(
ψ0yyyy − 9k4

cψ0

)
f 2

0 /2,

h33 = ikc

[
ψ0

(
Ω12 + 6k2

cψ12

)
+ ψ0yψ12y

]
+

(
3k2

cψ0t + ψ0yyyy + 3k4
cψ0

)
f12

−
(
2k2

cψ12t − ψ12tyy + ψ12yyyy − 8k2
cψ12yy + 16k4

cψ12

)
f0 + 3iSk5

cf
3
0 /2

+ ikc

(
ψ0yyy + 5k2

cψ0y

)
ψ0f0 +

[(
ψ0t − ψ0yy + k2

cψ0

)
yyy

/2 + k2
cψ0yt − 5k4

cψ0y

]
f 2

0 ,

H14 = H24 = 0, h14 = ikcψ0y, h24 = −
(
ψ0yyyy + k2

cψ0y

)
,

h34 = −
(
k2

cψ0t + ψ0yyy + 3k4
cψ0

)
.

Here, we have taken into account (2.13). The problem (A 19a, b)–(A 22) is again
singular for j = 1, . . . , 4 and thus has solution(s) only if an appropriate solvability
condition holds. This consists of requiring that the right-hand sides of (A 19)–(A 20) be
orthogonal, with an appropriate inner product, to a non-trivial solution of the adjoint
homogeneous problem (A 4)–(A 6). The coefficients α1, . . . , and α4 are given by

αj =

∫ 2π

0

∫ 0

−d

[(ψ̄∗
0t + Ω̄∗

0 )H1j + ψ̄∗
0H2j ] dy dt +

∫ 2π

0

[ψ̄∗
0H1jy − ψ̄∗

0yH1j ]y=0 dt

+

∫ 2π

0

[
− ik−1

c

(
ψ̄∗

0yyy + ψ̄∗
0yt − 3k2

c ψ̄
∗
0y

)
h1j − ψ̄∗

0yh2j + ψ̄∗
0h3j

]
y=0

dt, (A 23)

as obtained by multiplying (A 19b) by ψ̄∗
0 , multiplying the complex conjugate of (A 4b)

by ψj , subtracting the resulting equations, integrating in −d < y < 0, 0 < t < 2π,
integrating by parts repeatedly, substituting the remaining equations and boundary
conditions in (A 19)–(A 22) and (A 4)–(A 6), and using (A 9). Applying (A 23) to
(A 19)–(A 22) we obtain the coefficients α1, . . . , α4, which are as plotted in figure 3.
For the sake of brevity, we give here only the explicit expression for α4, which is

α4 =

∫ 2π

0

[(
ψ̄∗

0yyy + ψ̄∗
0yt − 2k2

c ψ̄
∗
0y

)
ψ0y + ψ̄∗

0yψ0yyy + k2
c ψ̄

∗
0ψ0t

]
y=0

dt

= −
∫ 2π

0

[ψ̄∗
0yyψ0yy]y=−d dt, (A 24)
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where the second equality follows after some algebra using (2.7)–(2.9) and (A 4)–(A 6).
Thus, since ψ0yy(−d) → 0 exponentially as d → ∞, (A 24) shows that α4 → 0 exponen-
tially as d → ∞. Note that G and S are assumed to be bounded here; see § A.3 below.

A.2. Slowly varying terms: second amplitude equation (3.3)

The mean flow equation is now derived from the following equations, which are
obtained by substituting (A 2) and (A 3) into (2.1)–(2.4), taking the spatial mean value
in the short spatial variable x, and retaining only leading-order terms,

ψm
yy = Ωm, Ωm

yy = H (y)(|A|2)ξ in − d < y < 0, (A 25)

f m
T − ψm

ξ = −α5(|A|2)ξξ , ψm
yy = α6(|A|2)ξ , ψm

yyy + Gf m
ξ = −α7(|A|2)ξ at y = 0,

(A 26a–c)∫ 1

0

Ωm
y dξ = ψm = ψm

y = 0 at y = −d,

∫ 1

0

f m dξ = 0, (A 27)

(ψm, Ωm)(ξ + 1, y, T ) ≡ (ψm, Ωm)(ξ, y, T ), f m(ξ + 1, T ) ≡ f m(ξ, T ), (A 28)

where

H (y) =
1

2π

∫ 2π

0

[ψ0yΩ0 − ψ0Ω0y + kc(ψ11Ω0 − ψ0Ω11)y] dt, (A 29)

α5 =
i

2π

∫ 2π

0

[ψ0yf11 − ψ11yf0]y=0 dt, (A 30)

α6 =
i

2π

∫ 2π

0

[(
2kcψ0y + 3k2

cψ11y − ψ11yyy

)
f0 +

(
ψ0yyy − 3k2

cψ0y

)
f11

]
y=0

dt, (A 31)

α7 =
1

2π

∫ 2π

0

[
|ψ0y |2 − k2

c |ψ0|2 + i
(
2k2

cψ11t + ψ11yyyy − 4kcψ0t + 3k4
cψ11

)
f0

− i
(
2k2

cψ0t + ψ0yyyy + 3k4
cψ0

)
f11

]
y=0

dt, (A 32)

as obtained (after some algebra) using (2.8), (2.13), (A 15) and (A 18). Note that H ,
α7, α5 and α6 are all real. Integration of (A 25), (A 26) and (A 27) yields

ψm =

[
K1(y + d)2

2
− K2(y + d)3

6
+

1

6

∫ y

−d

(y − z)3H (z) dz

]
(|A|2)ξ

+ G (2d − y)(y + d)2

6
f m

ξ , (A 33)

where

K1 = α6 + α7d +

∫ 0

−d

(z − d)H (z) dz, K2 = α7 −
∫ 0

−d

H (z) dz. (A 34)

And substitution of (A 33) into the boundary condition (A 26a) leads to (A 1a), where
β1 is given by

β1 = −α5 +
α6d

2

2
+

α7d
3

3
+

1

6

∫ 0

−d

(3d2z − 2d3 − z3)H (z) dz, (A 35)

and is plotted in figure 3e vs. d2, for the indicated values of Gd3 and Sd .
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A.3. Small viscosity

As viscosity goes to zero, either G � 1 or S � 1 (see (2.5)), and the wavenumber at
threshold is

kc 
 kc0 ∼
(
G + S1/3

)−1 � 1, (A 36)

where kc0 is the inviscid approximation of kc, which obeys the inviscid dispersion
relation

k0c

(
G + k2

0cS
)
tanh kocd = 1. (A 37)

For convenience we use the gravity–capillary balance parameter S and the non-
dimensional measure of viscous effects ε, defined as

S =
k2

0cS
k2

0cS + G ∼ 1, ε = k2
0c � 1. (A 38)

Also, inspection of the expressions derived above (which is fairly tedious and is
omitted) shows that

α−1
1 ∼ α3 ∼ α−1

5 ∼ εα−1
6 ∼ ε3/2

(
ε1/2 + e−2kcd

)
,

α2 ∼ α7 ∼ yH (y) ∼ ε1/2, α4 ∼ εe−2kcd .

}
(A 39)

These asymptotic estimates have been thoroughly checked numerically (see, e.g.
figures 7 and 9). Thus (see (A 35)),

β1 ∼ ε−3/2 as ε → 0. (A 40)

Appendix B. Derivation of the NPGL equation (B 6)
In the limit

kcd → ∞, (B 1)

the coefficient α4 becomes negligible (see (4.1)) and the first amplitude equation (3.3)
becomes decoupled from the free-surface elevation. This is true for moderately large
d , but not for sufficiently large d , when the horizontal velocity ψm

y ∼ d is large (see
(B 2)) and some terms that, are higher order when d ∼ 1 become non-negligible in
(A 1). In order to see that, we note that, in the limit (B 1),

ψm
y 
 α6d

4
(|A|2)ξ , f m 
 −β2

G (|A|2 − 〈|A|2〉ξ ), (B 2a, b)

where the spatial mean value 〈·〉 is defined in (B 3) and

β2 =
3β1

d3

 α7 −

∫ 0

−∞
H (z) dz, (B 3)

as obtained using (A 33), integrating in (A 1b), and taking into account that α5,
α6, α7 and yH (y) remain bounded as d → ∞ if both G and S remain finite, while
these behave as indicated in (A 39) at small viscosity in deep containers, namely in
the combined limit d → ∞, ε → 0. Substituting (B 2) into (A 3), a new term must be
included in the right-hand side of (A 3) that is of the order of d/L4. The new term is
proportional to ψm

y A and can be written as

d

L4
(|A|2)ξA(ψ8, Ω8, f8)e

ikcx . (B 4)
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This gives a new term in the right-hand side of (A 1a), which is rewritten as

AT = α1Aξξ + α2ΣA + α3A|A|2 + i(α8/L)ψm
y A (B 5)

or, invoking (B 2a), as

AT = α1Aξξ + α2ΣA + α3A|A|2 + i
α6α8

4

d

L
(|A|2)ξA. (B 6)

Here, (ψ8, Ω8, f8) and α8 are given by (A 19)–(A 22), with (j =8, d = ∞), and

H18 = 0, H28 = kcΩ0, h18 = kcf0, h28 = 0, h38 = −kcψ0y. (B 7)

We need only apply a solvability condition (the counterpart of (A 23), with j = 8 and
d = ∞), to this latter problem, to obtain

α8 = kc

∫ 2π

0

[∫ 0

−∞
ψ̄∗

0Ω0 dy −
[
ik−1

c

(
ψ̄∗

0yyy + ψ̄∗
0yt − 3k2

c ψ̄
∗
0y

)
f0 + ψ̄∗

0ψ0y

]
y=0

]
dt = kc,

where the last equality comes from invariance under Galilean transformations: x → x−
ct , ξ → ξ − T/L, ψy → ψy − c (namely, replacing these transformations into (A 3) and
(B 5), we obtain a new term on the right-hand side of (B 5), icL−2(α8 − kc)A, which
must vanish). The coefficient α8 is plotted in figure 7. Note that according to the
assumptions above, (2.6), the new non-potential term is small compared to cubic
nonlinearity in principle, except when |α6α8| is large compared to |α3|, which occurs
in particular as viscosity goes to zero, as seen invoking (A 39) and

α8 ∼ ε1/2 as ε → 0. (B 8)

Appendix C. Linear stability of the spatially uniform SWs of the amplitude
equations

The simplest steady states of the amplitude equations (3.7)–(3.8), (3.12) and (4.4),
and their linear stability properties can be obtained in closed form.

C.1. CAMF equations (3.7)–(3.8)

The uniform steady states of (3.7)–(3.8) are given by

B = Bn ≡
√

µ − δ2
ne

iδnξ , f m = 0 if µ > δ2
n with δn = δ + 2πn., (C 1)

for n= 0, ±1, ±2, . . . , and are in branches that bifurcate from the trivial solution
B = f m =0 at µ = δ2

n. The linear stability of these is analysed replacing B − Bn =
Bn[Xeλτ+ikmξ + Ȳ eλ̄τ−ikmξ ] and f m = |Bn|2Zeλτ+ikmξ + c.c., with km =2πm for m =0, ±1,

±2, . . . , and linearizing, to obtain a linear system of equations that has non-trivial
solutions provided that

λ3 +
[
(γ1 + 2)k2

m + 2|Bn|2
]
λ2 +

[
(2γ1 + 1)k2

m + 2(γ1 + γ2 + 1)|Bn|2 − 4δ2
n

]
k2

mλ

+
[
2(γ1 + γ2)|Bn|2 + γ1

(
k2

m − 4δ2
n

)]
k4

m = 0. (C 2)

This dispersion relation readily shows that:
(a) If γ1 + γ2 > 0 (figure 5a), then the solutions in the first branch (n = 0) are all

stable, while those in the remaining branches (n �= 0) are stable only if |Bn|2 > 2γ1(δ
2
n −

π2)/(γ1+γ2), the instability being stationary (λ= 0) provided that γ1(γ1+γ2)(δ
2
n+π2) �

γ1π
2 + γ2δ

2
n, and oscillatory (λ= purely imaginary) otherwise.
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(b) If γ1 + γ2 < 0 (figure 5b), then the solutions in the first branch (n= 0) are stable
provided that |B0|2 < − 2γ1(π

2 − δ2)/(γ1 + γ2), and unstable otherwise; the solutions
in the remaining branches are all unstable.

C.2. NLGL equation (3.12)

The uniform steady states are again given by (C 1), namely

B = Bn ≡
√

µ − δ2
ne

iδnξ for µ > δ2
n with δn = δ + 2πn. (C 3)

The linear stability of these is analysed as above, substituting

B − Bn = Bn[Xeλτ+ikmξ + Ȳ eλ̄τ−ikmξ ] (C 4)

into (3.12) and linearizing. It follows that the dispersion relation is given by

λ2 + 2R2
nλ = 0 if m = 0, (C 5)(

λ + k2
m

)2
+ 2(1 + Γ )R2

n

(
λ + k2

m

)
= 4k2

mδ2
n if m � 0, (C 6)

and implies that the first branch (n = 0) is exponentially stable, while the remaining
branches (n �= 0) are exponentially stable if (1 + Γ )R2

n > 2(k2
n − π2), and unstable

otherwise. This gives the plot in figure 5(a) if 1 + Γ > 0.

C.3. NPGL equation (4.4)

The uniform steady states of (4.4) are given once more by (C 3) and their linear
stability is analysed replacing (C 4) into (4.4) and linearizing. The dispersion relation
is (

λ + k2
m

)2
+ 2

(
λ + k2

m

)
R2

n − 4γDδnk
2
mR2

n − 4δ2
nk

2
m = 0, (C 7)

and shows that (figure 8):
(i) The whole first branch (n = 0) is exponentially stable if 2γDδ � 1. If instead

2γDδ > 1, then this branch is exponentially stable for R2
0 < 4(π2 − δ2)/(2γDδ − 1) and

unstable otherwise, the instability being stationary (λ = 0).
(ii) The remaining branches with n �= 0 are stable if 2γDδn < 1 and R2

n > 4(δ2
n −

π2)/(1 − 2γDδn) and are unstable otherwise, the instability being stationary (λ = 0).
(iii) Note in particular that if 0 <δ < π and γD is sufficiently large, then the first

branch is stable only in a vicinity quite close to threshold, δ2 < µ < µ′
0 = δ2 + 4(π2 −

δ2)/(2γDδ − 1) < (2π − δ)2 = µ−1. In this case, no steady state with a constant
amplitude is stable in the interval µ′

0 <µ<µ−1.
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Zhang, W. & Viñals, J. 1997 Pattern formation in weakly damped parametric surface waves.
J. Fluid Mech. 336, 301–330.

Zippelius, A. & Siggia, E. 1982 Disappearance of stable convection between free-slip boundaries.
Phys. Rev. A 26, 1788–1790.




